Ba-133: the Goldilocks qubit?

133Ba+, a manufacturered radioisotope, possesses several unique and desirable properties which are not found in any naturally occurring species, which make it a nearly ideal qubit.  Specifically, the barium electronic structure provides transitions in the visible part of the electromagnetic spectrum, enabling the use of the high-power lasers, low-loss fibers, high quantum efficiency detectors, and other optical equipment not available to ion species currently in use.  The nuclear structure of barium-133 provides a robust hyperfine clock state qubit that is easy to initialize and detect, yet protects the qubit coherence during shuttling and storage.  These features make it compatible with existing traps and in many ways superior to species currently in use, particularly for a QCCD architecture and for remote linking via photons. 

This project, in collaboration with Prof. Wes Campbell, has trapped and laser cooled this exciting isotope. We are currently developing the manipulation of the qubit levels of this ion.

Group Members

Justin Christensen- Graduate Student [physics.justin.christensen](jchristensen)
David Hucul- Postdoctoral Researcher [dhucul](dhucul)

email address: [@gmail](

Group Alumni

Tyler Jackson- Undergraduate Researcher
Calvin He- Undergraduate Researcher
Rudy Pei- Undergraduate Researcher

Group Publications

"Spectroscopy of a synthetic trapped ion qubit," D. Hucul, J.E. Christensen, E.R. Hudson, W.C. Campbell, Phys. Rev. Lett. 119, 100501 (2017)
                                                                            ArXiv preprint: arXiv:1705.09736 (2017)
                                                                            News & Commentary: Synopsis: Radioactive Qubits

For Visitors

Googe Maps location link
Parking link (UCLA Lot 2)
Knudsen Hall B-166 (in the basement)
Phone: 4788  (310-825-XXXX)